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Abstract We introduce some definitions related to semicontinuity of multivalued mappings
and discuss various kinds of semicontinuity-related properties. Sufficient conditions for the
solution sets of parametric multivalued symmetric vector quasiequilibrium problems to have
these properties are established. Comparisons of the solution sets of our two problems are also
provided. As an example of applications of our main results, the mentioned semicontinuity-
related properties of the solution sets to a lower and upper bounded quasiequilibrium problem
are obtained as consequences.

Keywords U -lower (or upper)-level closednesss · U -Hausdorff-lower (or upper)- level
closedness · U -lower (or upper)-semicontinuity · U -Hausdorff-lower (or upper)-semicon-
tinuity · (Hausdorff) lower or upper semicontinuity · U -inclusion property · Symmetric
quasiequilibrium problems · Lower and upper bounded quasiequilibrium problems ·
Solution sets

1 Introduction

The equilibrium problem, introduced in Blum and Oettli (1994), has been being studied
intensively so far with more and more general problem settings to include various practical
optimization-related problems. The first main focus has been made for existence conditions,
see e.g., recent papers and references therein: Bianchi and Schaible (2004), Iusem and Sosa
(2003), and Hai and Khanh (2007a) for equilibrium problems, Tan (2004), Luc and Tan
(2004), and Hai and Khanh (2007b) for variational inclusion problems, Ansari et al. (2000,
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2002), Lin (2006), and Hai and Khanh (2006) for systems of equilibrium problems and
Hai and Khanh (2007c) for systems of variational inclusion problems. Recently, to model
generally symmetric features in varying problems in practice, a symmetric quasiequilibrium
problem was proposed in Noor and Oettli (1994). This result was extended to the vector case
in Fu (2003), and Farajzadeh (2006) and to the multivalued case in Anh and Khanh (2007c).

Stability is a vital subject of applied mathematics. However, for the above-mentioned
problems there have been limited number of works in the literature, see Bianchi and Pini
(2003, 2006), Anh and Khanh (2004, 2006, 2007a), submitted for publication Ait Mansour
and Riahi (2005), and Haung et al. (2006). To the best of our knowledge, no paper has been
devoted to stability of symmetric equilibrium problems. This motivates our commitment in
this note: investigating semicontinuity of the solution sets of these problems at a general
setting. Moreover, we try to highlight kinds of semicontinuity, proposing also some semi-
continuity-related definitions to have a better insight. We pay attention on relationships of
kinds of semicontinuity-related properties too.

In the sequel, if not otherwise stated, let X, Y , and Z be Hausdorff topological vector
spaces. Let Λ and M be topological spaces. Let K ⊆ X, D ⊆ Y be nonempty. Let C ⊆ Z be
closed with nonempty interior intC . Let S, A : K × D × � → 2K , T, B : K × D × � →
2D, F : K × D × K × M → 2Z and G : D × K × D × M → 2Z be multivalued mappings.
The parametric symmetric quasiequilibrium problems under our consideration consist of, for
(λ, µ) ∈ Λ × M ,

(SQEP1) finding (x̄, ȳ) ∈ K × D such that x̄ ∈ S(x̄, ȳ, λ), ȳ ∈ T (x̄, ȳ, λ), and

F(x, ȳ, x∗, µ) ∩ (Z\ − intC) �= ∅,∀x ∈ S(x̄, ȳ, λ),∀x∗ ∈ A(x̄, ȳ, λ),

G(y, x̄, y∗, µ) ∩ (Z\ − intC) �= ∅,∀y ∈ T (x̄, ȳ, λ),∀y∗ ∈ B(x̄, ȳ, λ);
(SQEP2) finding (x̄, ȳ) ∈ K × D such that x̄ ∈ S(x̄, ȳ, λ), ȳ ∈ T (x̄, ȳ, λ), and

F(x, ȳ, x∗, µ) ⊆ Z\ − intC,∀x ∈ S(x̄, ȳ, λ),∀x∗ ∈ A(x̄, ȳ, λ),

G(y, x̄, y∗, µ) ⊆ Z\ − intC,∀y ∈ T (x̄, ȳ, λ),∀y∗ ∈ B(x̄, ȳ, λ).

Note that sufficient conditions for the solution existence of these problems were pro-
vided in Anh and Khanh (2007c). Therefore, we now focus only on the solution stabil-
ity, assuming that the referred solution always exists. Notice also that our problem setting
includes all that of Noor and Oettli (1994), Fu (2003), and Farajzadeh (2006) for symmetric
quasiequilibrium problems and hence of course that of quasiequilibrium problems (when
Y = X, G(y, x̄, y∗) ≡ C, B(x, y) = D and T (x, y) = clS(x, y)).

The layout of the paper is as follows. We supply some definitions and preliminaries in the
rest of this section. In Sect. 2, we derive various kinds of semicontinuity of multivalued map-
pings and the relations of this concepts. Section 3 is devoted to kinds of lower semicontinuity
of the solution sets, while different types of upper semicontinuity are the subjects of Sect. 4.
In the next Sect. 5 we discuss some comparisons of the solution sets of our two problems.
Applications to a lower and upper bounded quasiequilibrium problem are presented in the
final Sect. 6.

Recall now some notions. Let X and Y be as above and Q : X → 2Y be a multifunction.
Q is called lower semicontinuous (lsc) at x0 if: Q(x0)∩U �= ∅ for some open subset U ⊆ Y
implies the existence of a neighborhood N of x0 such that, ∀x ∈ N , Q(x) ∩ U �= ∅. Q is
upper semicontinuous (usc) at x0 if for each open subset U ⊇ Q(x0), there is a neighborhood
N of x0 such that U ⊇ Q(N ). Q is said to be Hausdorff lower semicontinuous (H-lsc) at
x0 if for each neighborhood B of the origin in Y , there is a neighborhood N of x0 such that
Q(x0) ⊆ Q(x) + B,∀x ∈ N . Q is termed Hausdorff upper semicontinuous (H-usc) at x0 if
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the last inclusion is replaced by Q(x) ⊆ Q(x0) + B,∀x ∈ N . Q is called closed at x0 if, for
each net (xα, yα) ∈ graphQ := {(x, y) | y ∈ Q(x)} : (xα, yα) → (x0, y0), y0 ∈ Q(x0). We
say that Q satisfies a certain property in a subset A ⊆ X if Q satisfies it at every point of A.
If A = domQ := {x | Q(x) �= ∅} we omit “in domQ” in the saying.

The following assertions are known and we give a reference only in cases of nonpopular
statements.

(a) Q is lsc at x0 if and only if ∀xα → x0. ∀y ∈ Q(x0), ∃yα ∈ Q(xα), yα → y.
(b) Q is closed if and only if graphQ is closed.
(c) Q is closed at x0 if Q is H-usc at x0 and Q(x0) is closed (Anh and Khanh 2004).
(d) Q is H-usc at x0 if Q is usc at x0. Conversely, Q is usc at x0 if Q is H-usc at x0 and

Q(x0) is compact (Anh and Khanh 2004).
(e) Q is usc at x0 if Q(A) is compact for any compact subset A of domQ and Q is closed

at x0.
(f) Q is usc at x0 if Y is compact and Q is closed at x0.
(g) Q is lsc at x0 if Q is H-lsc at x0. The converse is true if Q(x0) is compact (Hu and

Papageorgiou 1997).

2 Various kinds of semicontinuity

We propose some definitions related to semicontinuity to have a better insight as follows.

Definition 2.1 Let X be a Hausdorff topological space, Y be a topological vector space,
Q : X → 2Y and ∅ �= U ⊆ Y .

(i) Q is called U -lower-level closed at x0 if Q(x0) ⊆ clU whenever Q(xα) ⊆ clU,∀α for
some net xα → x0 (cl(.) means the closure of (.)).

(ii) Q is said to be U -Hausdorff-lower-level closed at x0 if there is ᾱ, Q(x0) \ clU ⊆
Q(xᾱ) + B whenever a net xα → x0 and B is a neighborhood of 0.

(iii) Q is said to be U -upper-level closed at x0 if Q(x0) �⊆ −intU whenever Q(xα) �⊆
−intU,∀α, for some net xα → x0.

(iv) Q is termed U -Hausdorff-upper-level closed at x0 if, for each neighborhood B of
0, Q(x0) + B �⊆ −intU whenever a net xα → x0 exists with Q(xα) �⊆ −intU,∀α.
Note that if intU = ∅ then each Q satisfies both (iii) and (iv). Furthermore, recall that
Q is U -lower-level closed means that Q is U -lower-level closed at every x ∈ domQ.

Next we define other relaxed semicontinuity properties.

Definition 2.2 Let X, Y, Q and U be as in Definition 2.1.

(i) Q is said to be U -lower semicontinuous (U -lsc) at x0 if

[xα → x0, Q(x0) ∩ intU �= ∅] �⇒ [∃ᾱ, Q(xᾱ) ∩ intU �= ∅].
(ii) Q is said to be U -Hausdorff-lower semicontinuous (U -Hlsc) at x0 if, for any xα → x0

and B (a neighborhood of 0 in Y ), there is ᾱ such that Q(x0) ∩ intU ⊆ Q(xᾱ) + B.
(iii) Q is called U -upper semicontinuous (U -usc) at x0 if

[xα → x0, Q(x0) ⊆ intU ] �⇒ [∃ᾱ, Q(xᾱ) ⊆ intU ].
(iv) Q is termed U -Hausdorff-upper semicontinuous (U -Husc) at x0 if, for

[xα → x0, Q(x0) +B ⊆ intU for some neighborhood B of 0]
�⇒ [∃ᾱ, Q(xᾱ) ⊆ intU ].
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(v) Q is called lower semicontinuous with respect to U at x0 if, ∀xα → x0,∀y ∈ Q(x0)\U ,
∃yα ∈ Q(xα), yα → y.

Similarly as for Definition 2.1 here intU may be empty.
The following two examples explain that the properties of the above definitions are very

easily satisfied. Moreover, the notions in Definition 2.1 are in a sense quite different from
that in Definition 2.2.

Example 2.1 Let X = Y = R, U = [0, 1] and Q : R → 2R be defined by

Q(x) =
{

[ 1
4 , 1

2 ], if x = 0,

[ 3
2 , 2], if x �= 0.

Then Q satisfies all the four properties of Definition 2.1, but Q does not fulfilled any one
among (i)–(iv) of Definition 2.2 (it satisfies (v)).

Example 2.2 Let X = Y = R, U = R+ and Q : R → 2R be defined by

Q(x) =
{

[−1,− 1
2 ], if x = 0,

(0, 2], if x �= 0.

Then, Q meets all conditions (i)–(iv) of Definition 2.2, but Q violates each property of
Definition 2.1.

On the other hand, the following proposition shows that the above two definitions are
closely related in another sense.

Proposition 2.1 Let X, Y, Q, and U be as in Definition 2.1.

(i) Q is U-lsc at x0 if and only if Q is Y \U-lower-level closed at x0.
(ii) Q is U-Hlsc at x0 if and only if Q is Y \U-Hausdorff-lower-level closed at x0.

(iii) Q is U-usc at x0 if and only if Q is −U-upper-level closed at x0.
(iv) Q is U-Husc at x0 if and only if Q is −U-Hausdorff-upper-level closed at x0.

Proof By the similarity we demonstrate only (i) and (iv).

(i) For the “only if” suppose Q is U -lsc at x0 but there is xα → x0 such that Q(xα) ⊆
cl(Y \U ) = Y \intU but Q(x0) �⊆ Y \intU . Then Q(x0) ∩ intU �= ∅. Since Q is U -lsc
at x0, there exists ᾱ with Q(xᾱ) ∩ intU �= ∅, which is absurd.
For the “if” suppose Q is Y \U -lower-level closed at x0 but there exists xα → x0 such
that Q(x0)∩ intU �= ∅ and Q(xα)∩ intU = ∅,∀α. Then Q(xα) ⊆ Y\intU = cl(Y\U ).
Since Q is Y\U -lower-level closed at x0, the last inclusion implies a contradiction that
Q(x0) ⊆ Y \intU .

(iv) For the “only if” suppose Q is U - Husc at x0 but a net xα tending to x0 exists such that
Q(xα) �⊆ intU,∀α, and there is a neighborhood B of 0 such that Q(x0) + B ⊆ intU .
As Q is U - Husc at x0, the last inclusion implies that ∃ᾱ, Q(xᾱ) ⊆ intU , which is
impossible.

For the “if” suppose Q is −U -Hausdorff-upper-level closed but there are xα → x0, a
neighborhood B of x0 such that Q(x0) + B ⊆ intU and Q(xα) �⊆ intU,∀α. Then, by the
−U -Hausdorff-upper-level closedness, Q(x0) + B �⊆ intU for each neighborhood B of 0, a
contradiction. ��

The following assertion justifies the terminology used in Definition 2.1.
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Proposition 2.2 Let X, Y, Q, and U be as in Definition 2.1.

(i) Q is U-lower-level closed if and only if the lower-level set {x | Q(x) ⊆ clU } is closed,
if and only if Q is Y \U-lsc.

(ii) Q is U-upper-level closed if and only if the upper-level set {x | Q(x) �⊆ −intU } is
closed, if and only if Q is −U-usc.

(iii) Q is lsc at x0 if and only if Q is U-lower-level closed at x0 for each U ⊆ Y .
(iv) Q is Hlsc at x0 if and only if Q is U-Hausdorff-lower-level closed at x0 for each U ⊆ Y .
(v) Q is usc at x0 if and only if Q is U-upper-level closed at x0 for each U ⊆ Y .

(vi) Q is Husc at x0 if and only if Q is U-Hausdorff-upper-level closed at x0 for each
U ⊆ Y .

Proof (i) and (ii) are obvious.
(iii) “If”. Suppose that Q is U -lower-level closed for each U ⊆ Y but for some open

subset V with Q(x0)∩V �= ∅ there is xα → x0 with Q(xα)∩V = ∅. Then Q(xα) ⊆ Y\V :=
U = clU . By the U -lower-level closedness Q(x0) ⊆ clU = Y \V , i.e Q(x0) ∩ V = ∅, a
contradiction.

“Only if.” Suppose that Q is lsc at x0 but there are xα → x0 and U ⊆ Y with Q(xα) ⊆
clU,∀α, and Q(x0) �⊆ clU , i.e., some y0 ∈ Q(x0)\clU exists. By the lower semicontinuity
at x0, there is yα ∈ Q(xα), yα → y0. As yα ∈ clU, y0 ∈ clU , which is impossible.

(iv)–(vi) It is checked similarly as (iii). ��
The next proposition justifies the termins employed in Definition 2.2.

Proposition 2.3 Let X, Y, Q and U be as in Definition 2.1

(i) Q(.) is lsc at x0 ∈ X if and only if Q(.)\clU is lsc at x0 for all U ⊆ Y .
(ii) Q(.) is lsc at x0 ∈ X if and only if Q(.) is lsc with respect to U at x0 for all U ⊆ Y .

(iii) Q(.) is usc at x0 ∈ X if and only if Q(.)\−intU is usc at x0 for all U ⊆ Y .
(iv) Q(.) is Husc at x0 if Q(.)\−intU is Husc at x0 for all U⊆Y . The converse is true if

Q(x0) is compact.

Proof (i) To check the “only if” let y0 ∈ Q(x0)\clU and xα → x0. Since Q(.) is lsc at x0,
there is yα ∈ Q(xα), yα → y0. Because y0 /∈ clU we can assume that yα /∈ clU,∀α, i.e.,
yα ∈ Q(xα)\clU . This means the lower semicontinuity of Q(.)\clU .

For the “if” suppose that Q is not lsc at x0, i.e., ∃y0 ∈ Q(x0), ∃xα → x0,∀yα ∈
Q(xα), yα �→ y0. Take arbitrarily a closed subset U which does not contain y0. Then any
yα ∈ Q(xα)\clU ⊆ Q(xα) cannot tend to y0. This contradicts the lower semicontinuity of
Q(.)\clU .

(ii) and (iii) are proved similarly.
(iv) For the “if” let U be such that intU = ∅.

For the “converse”, if Q(x0) is compact and Q(.) is Husc, by Proposition 3.1 (Anh and
Khanh 2004) Q(.) is usc at x0. Hence Q(.)\−intU is usc at x0 for all U ⊆ Y by (iii). Due
to (d) in Sect. 1, Q(.)\−intU is Husc at x0 for all U ⊆ Y . ��

The following example shows that in (iv) the compactness of Q(x0) is essential.

Example 2.3 Let X = Y = R, Q(x) = (x, x + 4), x0 = 0, and U = (−4,−2).
It is clear that Q(.) is Husc at 0 (Q(.) is not usc at 0), but Q(.)\−intU is not Husc at

0. Indeed, let xn = 1
n and B = (−1, 1). Some direct computations show that xn → 0 and

Q(xn)\−intU = ( 1
n , 2] ∪ [4, 1

n + 4) �⊆ Q(0)\−intU + B = (0, 2] + B = (−1, 3),∀n. The
reason is that Q(0) = (0, 4) is not compact.
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The following proposition is not hard to verify, gives additional relations and helps to have
a clear insight.

Proposition 2.4 Let X, Y, Q, and U be as in Definition 2.1.

(i) Q is lsc at x0 if and only if Q is U-lsc at x0 for all U.
(ii) Q is usc at x0 if and only if Q is U-usc at x0 for all U.

(iii) Q is U-lsc, U-usc, U-Hlsc or U-Husc at x0 if and only if Q is intU-lsc, intU-usc,
intU-Hlsc or intU-Husc at x0, respectively.

(iv) U-Hausdorff-lower semicontinuity implies U-lower semicontinuity. The converse is not
true even under compactness assumptions.

(v) U-upper semicontinuity implies U-Hausdorff-upper semicontinuity. If Q(x0) is com-
pact then the converse is true at x0.

(vi) Q is lsc with respect to U at x0 if and only if Q is lsc with respect to V at x0, for all
V ⊇ U.

(vii) Q is lsc with respect to U at x0 if Q(.)\U is lsc at x0. The converse is true if U is
closed.

The following Examples 2.5 and 2.6 show that in (v) and (vii) we do not have the inverse
implications without the respective compactness and closedness. Example 2.4 ensures that
the converse of (iv) is not true even under the corresponding compactness assumption.

Example 2.4 Let X, Y , and x0 be as in Example 2.3, and let U = R+, Q(0) = [0, 2] and
Q(x) = [0, 1] for x �= 0. It is easy to see that Q(.) is R+-lsc at 0 and Q(x) is com-
pact ∀x ∈ R. But Q(.) is not R+-Hlsc at 0. Indeed, picking B = (− 1

2 , 1
2 ) we see that

∀xα → 0, xα �= 0, Q(0) ∩ intR+ = (0, 2] �⊆ Q(xα) + B = (− 1
2 , 3

2 ),∀α.

Example 2.5 Let X, Y, Q, and x0 be as in Example 2.3, and let U = (0, 4). We easily see that
Q(.) is U -Husc at 0, but Q(.) is not U -usc at 0, since Q(0)⊆(0, 4) but, for xn = 1

n , Q(xn) �⊆
(0, 4),∀n.

Example 2.6 Let X, Y , and x0 be as in Example 2.3, Q(x) = [|x |, |x | + 2] and U = (0, 1].
Then Q(0)\U = {0} ∪ (1, 2] and Q(x) = (1, |x | + 2],∀x �= 0. Hence Q(.)\U is not lsc at
0 but Q(.) is lsc with respect to U . The reason is that U is not closed.

The following definition in Anh and Khanh (2004) is closely related to Definition 2.2.

Definition 2.3 Let X, Y, Q and U be as in Definition 2.1.

(i) Q is called to have the U -inclusion property at x0 if [xα → x0, Q(x0)∩ (Y\−intU ) �=
∅] �⇒ [∃ᾱ, Q(xᾱ) ∩ (Y \−intU ) �= ∅].

(ii) Q is said to have the strict U -inclusion property at x0 if [xα → x0, Q(x0) ⊆ Y \
−intU ] �⇒ [∃ᾱ, Q(xᾱ) ⊆ Y \−intU ].

Note that the difference between Definitions 2.2 and 2.3 is that the set intU in the former
is always open and Y \−intU in the latter is always closed. An example of a mapping with
both the U -inclusion and strict U -inclusion properties is F in Example 3.3 and F and G in
Example 3.4.
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3 Lower-semicontinuity-related results

In the sequel let Sol1(λ, µ) and Sol2(λ, µ) be the solution sets of (SQEP1) and (SQEP2),
respectively, at (λ, µ) and let

E(λ) := {(x, y) | x ∈ S(x, y, λ), y ∈ T (x, y, λ)}.
Theorem 3.1 Assume for problem (SQE P1) that, for ∅ �= U ⊆ X × Y ,

(il) E(.)\clU is lsc at λ0;
(iiu) S, T, A, and B are usc and compact valued in K × D × {λ0};
(iiill) F and G are (Z\−C)-lsc in K × D × K ×{µ0} and D × K × D ×{µ0}, respectively;
(iv1) for each (x̄, ȳ) ∈ Sol1(λ0, µ0),

F(x, ȳ, x∗, µ0) ∩ (Z\ − C) �= ∅,∀x ∈ S(x̄, ȳ, λ0),∀x∗ ∈ A(x̄, ȳ, λ0),

G(y, x̄, y∗, µ0) ∩ (Z\ − C) �= ∅,∀y ∈ T (x̄, ȳ, λ0),∀y∗ ∈ B(x̄, ȳ, λ0).

Then Sol1(., .) is U-lower-level closed at (λ0, µ0).

Proof Arguing by contraposition, suppose the existence of (λα, µα) → (λ0, µ0) such
that Sol1(λα, µα) ⊆ clU,∀α, but (x0, y0) ∈ Sol1(λ0, µ0)\clU exists. Then ∀(xα, yα) ∈
Sol1(λα, µα), (xα, yα) �→ (x0, y0). Since E(.)\clU is lsc at λ0, there is (x̄α, ȳα) ∈ E(λα)\
clU, (x̄α, ȳα) → (x0, y0). By the contradiction assumption, there exists a subnet (x̄β, ȳβ) /∈
Sol1(λβ, µβ),∀β. This means the existence of x̂β ∈ S(x̄β, ȳβ, λβ), x̄∗

β ∈ A(x̄β, ȳβ, λβ),

F(x̂β, ȳβ, x̄∗
β, µβ) ⊆ −intC, (1)

or for some ŷβ ∈ T (x̄β, ȳβ, λβ), ȳ∗
β ∈ B(x̄β, ȳβ, λβ),

G(ŷβ, x̄β, ȳ∗
β, µβ) ⊆ −intC. (2)

Assume that (1) is fulfilled. Since S, A are usc at (x0, y0, λ0) and S(x0, y0, λ0), A(x0, y0,

λ0) are compact, one has x̂0 ∈ S(x0, y0, λ0), x̄∗
0 ∈ A(x0, y0, λ0) such that x̂β → x̂0, x̄∗

β →
x̄∗

0 , (taking subnets if necessary). By (iv1), we have

F(x̂0, y0, x̄∗
0 , µ0) ∩ (Z\ − C) �= ∅. (3)

By the (Z\−C)-lower semicontinuity of F at (x̂0, y0, x̄∗
0 , µ0), we see a contradiction between

(1) and (3). If (2) holds, the reasoning is similar. ��
To emphasize the symmetry and other relations between the assumptions of our theorems

we adopt some subscripts and superscripts. A subscript l as in (il) means that this assumption
is about lower semicontinuity. A superscript l as in (iiill) says that this assumption in imposed
to get a lower semicontinuity result.

Taking into account Propositions 2.2 and 2.3 we obtain the following immediate conse-
quence of Theorem 3.1.

Corollary 3.1 Assume for problem (SQE P1) assumptions (i iu) − (iv1) of Theorem 3.1.
Assume further that

(i ′l ) E is lsc at λ0.

Then Sol1(., .) is lsc at (λ0, µ0).
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If X ≡ Y, K ≡ D, then setting S(x, y, λ) := S(y, λ), T (x, y, λ) := clS(y, λ), A(x, y,

λ) := A(y, λ), B(x, y, λ) ≡ K , F(x, x̄, x∗, µ) := F(x, x∗, µ) and G(y, x̄, y∗, µ) ≡ C ,
our problems (SQEP1) and (SQEP2) collapse to problems (Psα1) and (Psα2), respectively,
investigated in Anh and Khanh (Anh and Khanh (2007a)). The following example shows
that in this case Corollary 3.1 improves Theorem 2.2 in Anh and Khanh (Anh and Khanh
(2007a)).

Example 3.1 Let X = Y = R,Λ ≡ M = [0, 1], K = R, C = R+, S(x, λ) = [0, 1], A(x,

λ) = {x}, λ0 = 0 and

F(x, x∗, λ) =
{

{1} if λ = 0,

{2} otherwise,

Then all assumptions of Corollary 3.1 are fulfilled. By this corollary the solution set is lsc at
0 (in fact Sol1(λ) = [0, 1],∀λ ∈ [0, 1]), but Theorem 2.2 in Anh and Khanh (2007a) cannot
be applied since F is not lsc at 0.

Furthermore, if in addition, A(x, λ) = {x} then our problems become (QEP) and (SQEP),
respectively, studied in Anh and Khanh (2004). Example 3.1 shows also that Corollary 3.1
is strictly stronger Theorem 2.1 in Anh and Khanh (2004).

The following example shows that the rather strong and oddly looking assumption (iv1)
cannot be dropped.

Example 3.2 Let X = Y = Z = R,Λ ≡ M = [0, 1], C = R+, S(x, y, λ) = T (x, y, λ) =
A(x, y, λ) = B(x, y, λ) = [0, 1], F(x, y, x∗, λ) = {λ(y − x)}, G(y, x, y∗, λ) = {1} and
λ0 = 0. Then (i′l) − (iiill) are clearly satisfied. However, some direct computation gives
Sol1(0) = [0, 1] and Sol1(λ) = {1} for each λ > 0 and hence Sol1(.) is not lsc at 0. The
reason is that (iv1) is violated.

Although assumption (iv1) is essential, it together with (iiill ) can be replaced by a condition
relating F and G as follows.

Theorem 3.2 Assume (il) and (i iu) as in Theorem 3.1 and replace (iiill ) and (iv1) by

(iii1) F and G have the C-inclusion property in K × D × K ×{µ0} and D × K × D ×{µ0},
respectively.

Then Sol1(., .) is U-lower-level closed at (λ0, µ0).

Proof The first part of the proof of Theorem 3.1 (until the last sentence before (3)), using only
(il) and (iiu) remains valid here. Now assumption (iii1) together with the fact that (x0, y0) ∈
Sol1(λ0, µ0) imply the existence of β1, β2 such that F(x̂β1 , ȳβ1 , x̄∗

β1
, µβ1)∩(Z\− intC) �= ∅

and G(ŷβ2 , x̄β2 , ȳ∗
β2

, µβ2) ∩ (Z\ − intC) �= ∅, which contradicts (1) or (2), respectively. ��
We clearly have a direct consequence as follows.

Corollary 3.2 Assume (i iu) and (i i i1) as in Theorem 3.2 and replace (il) by

(i ′l ) E is lsc at λ0.

Then Sol1(., .) is lsc at (λ0, µ0).

When the symmetric quasiequilibrium problems are particularized as quasiequilibrium
problems, Corollary 3.2 coincides with Theorem 2.2 in Anh and Khanh (2004). The follow-
ing example shows that the assumptions of this corollary are easier to check than that of
Theorem 2.1 in Anh and Khanh (2007a).
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Example 3.3 Let X, Y,Λ, M, K , C, λ0 be as in Example 3.1 and S(x, λ) = [λ, λ+1], A(x,

λ) = [sin α, 2] and

F(x, x∗, λ) =
{

{0} if λ = 0,

{1} otherwise.

It is easy to see that all assumptions of Corollary 3.2 are fulfilled but it is difficult to verify
the openness of Urα in Theorem 2.1 of Anh and Khanh (2007a).

The main advantage of assumption (iii1) is that it does not require any information on the
solution set Sol1(λ0, µ0). Moreover, (iii1) may be satisfied even in cases, where both (iiill)
and (iv1) are not fulfilled as shown by the following example.

Example 3.4 Let X = Y = Z = R,Λ ≡ M = [0, 1], K = D = R, C = R+, S(x, y, λ) =
T (x, y, λ) = A(x, y, λ) = B(x, y, λ) = [0, 1], λ0 = 0 and

F(x, y, x̂, λ) =
{

{0} if λ = 0,

{1} otherwise,

G(y, x, ŷ, λ) =
{

{0} if λ = 0,

{ 1
2 } otherwise.

Then, it is not hard to see that (il), (iiu) and (iii1) are satisfied and, according to Theorem
3.2, Sol1(.) is lsc at 0 (in fact Sol1(λ) = [0, 1], for all λ ∈ [0, 1]). Evidently (iiill) and (iv1)
are not fulfilled in this case.

The following example shows that the assumption (i′l) is essential.

Example 3.5 Let X = Y = Z = R,Λ ≡ M = [0, 1], K = D = R, C = R+, λ0 =
0, A(x, y, λ) = {x}, B(x, y, λ) = {y} and

S(x, y, λ) =
{

[−1, 1] if λ = 0,

[−λ − 1, 0] if λ �= 0,

T (x, y, λ) ≡ {1},
F(x, y, x∗, λ) = G(y, x, y∗, λ) ≡ {1}.

Then all assumptions but (i′l) of Corollaries 3.1 and 3.2 are satisfied. In fact, E(0) = [−1, 1]×
{1} and E(λ) = [−λ − 1, 0] × {1},∀λ �= 0. So E is not lsc at λ0 = 0. However for
U = C × C, E(0)\clU = [−1, 0) × {1} and E(λ)\clU = [−λ − 1, 0) × {1} for λ �= 0
and hence E(.)\clU is lsc at λ0. Checking directly we see that Sol1(0) = [−1, 1] × {1} and
Sol1(λ) = [−λ−1, 0]×{1} for λ �= 0. Then Sol1(.) is U -lower-level closed at λ0 but Sol1(.)
is not lsc at λ0.

Passing to problem (SQEP2) we easily get the following corresponding results, which are
given without proofs.

Theorem 3.3 Assume for problem (SQE P2), (il) and (i iu) of Theorem 3.1. Assume further
that

(iiilu) F and G are (Z\−C)-usc in K × D × K ×{µ0} and D × K × D ×{µ0}, respectively;
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(iv2) for each (x̄, ȳ) ∈ Sol2(λ0, µ0),

F(x, ȳ, x∗, µ0) ⊆ Z\ − C,∀x ∈ S(x̄, ȳ, λ0),∀x∗ ∈ A(x̄, ȳ, λ0),

G(y, x̄, y∗, µ0) ⊆ Z\ − C,∀y ∈ T (x̄, ȳ, λ0),∀y∗ ∈ B(x̄, ȳ, λ0).

Then Sol2(., .) is U-lower-level closed at (λ0, µ0).

Corollary 3.3 Assume (i iu), (i i i l
u) and (iv2) as in Theorem 3.3 and replace (il) by

(i ′l ) E is lsc at λ0.

Then Sol2(., .) is lsc at (λ0, µ0).

Example 3.1 shows also that Corollary 3.3 strictly includes Theorem 2.3 in Anh and Khanh
(2004) and Theorem 2.2 in Anh and Khanh (2007a).

Theorem 3.4 Assume for problem (SQE P2), (il), and (i iu). Assume further that

(iii2) F and G have the strict C-inclusion property in K×D×K×{µ0}and D×K×D×{µ0},
respectively.

Then Sol2(., .) is U-lower-level closed at (λ0, µ0).

Corollary 3.4 Assume (i iu) and (i i i2) as in Theorem 3.4 and replace (il) by

(i ′l ) E is lsc at λ0.

Then Sol2(., .) is lsc at (λ0, µ0).

Corollary 3.4 coincides with Theorem 2.4 in Anh and Khanh (2004). In comparison with
the corresponding result of Anh and Khanh (2007a), Example 3.3 gives a case where the
assumptions of this corollary are easier to be checked (than that of Theorem 2.1 in Anh and
Khanh (2007a)).

Example 3.4 indicates also that (iii2) may be satisfied even when both (iiilu) and (iv2) are
violated, since here F and G are single-valued and (iii1) coincides with (iii2).

We now proceed to Hausdorff lower semicontinuity.

Theorem 3.5 Assume for (SQEP1) (iiu), (iiill), and (iv1) of Theorem 3.1. Assume further,
for ∅ �= U ⊆ X × Y , that

(i) E is lsc with respect to intU at λ0, E(λ0)\intU is compact and S(., ., λ0) is closed in
K × D × {λ0};

(ii) S(., ., λ0), T (., ., λ0), A(., ., λ0) and B(., ., λ0) are lsc;
(iii) F(., ., µ0) and G(., ., µ0) are −C-usc in K × D × K and D × K × D, respectively.

Then Sol1(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Proof We first show that Sol1(λ0, µ0) is closed in X × Y . Suppose that (xα, yα) ∈ Sol1(λ0,

µ0), (xα, yα) → (x0, y0). If (x0, y0) /∈ Sol1(λ0, µ0). Then there exist x̂0 ∈ S(x0, y0, λ0), x∗
0∈ A(x0, y0, λ0),

F(x̂0, y0, x∗
0 , µ0) ⊆ −intC, (4)

or ŷ0 ∈ T (x0, y0, λ0), y∗
0 ∈ B(x0, y0, λ0),

G(ŷ0, x0, y∗
0 , µ0) ⊆ −intC. (5)
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Suppose (4) is fulfilled. Since S(., ., λ0) and A(., ., λ0) are lsc in K × D, there are
x̂α ∈ S(xα, yα, λ0), x∗

α ∈ A(xα, yα, λ0) such that (x̂α, x∗
α) → (x̂0, x∗

0 ). As (xα, yα) ∈
Sol1(λ0, µ0), we have

F(x̂α, yα, x∗
α, µ0) �⊆ −intC. (6)

By the −C-upper semicontinuity of F(., ., ., µ0) in K × D × K , we see a contradiction
between (4) and (6). The argument for the case, where (5) holds, is similar. Hence, Sol1(λ0, µ0)

is closed and hence Sol1(λ0, µ0)\intU is compact, by (i).
We show that ∀(λα, µα) → (λ0, µ0),∀(x̄0, ȳ0) ∈ Sol1(λ0, µ0) \ intU, ∃(x̄α, ȳα) ∈

Sol1(λα, µα), (x̄α, ȳα) → (x̄0, ȳ0). Suppose to the contrary that there exist (λα, µα) →
(λ0, µ0) and (x̄0, ȳ0) ∈ Sol1(λ0, µ0)∩ (

(X ×Y )\intU
)

such that ∀(xα, yα) ∈ Sol1(λα, µα),

(xα, yα) �→ (x̄0, ȳ0). Since E is lsc with respect to intU at λ0, there is (x̄α, ȳα) ∈ E(λα), (x̄α,

ȳα) → (x̄0, ȳ0). By the contradiction assumption, there exists a subnet (x̄β, ȳβ) /∈ Sol1(λβ,

µβ),∀β. The further argument to see a contradiction is similar as that of Theorem 3.1.
Now suppose that Sol1(., .) is not U -Hausdorff-lower-level closed at (λ0, µ0), i.e., ∃B (a

neighborhood of the origin in X × Y ), ∃(λα, µα) → (λ0, µ0) such that ∀α, ∃(x0α, y0α) ∈
Sol1(λ0, µ0)\clU, (x0α, y0α) /∈ Sol1(λα, µα) + B. Since Sol1(λ0, µ0)\ intU is compact,
we can assume that (x0α, y0α) → (x0, y0) ∈ Sol1(λ0, µ0)\ intU . So we can suppose that
there are α1, a neighborhood B1 of 0 in X × Y with B1 + B1 ⊆ B and bα ∈ B1 such
that, ∀α ≥ α1, (x0α, y0α) = (x0, y0) + bα . By the preceding part of the proof there is
(xα, yα) ∈ Sol1(λα, µα), (xα, yα) → (x0, y0) and hence, one can assume that there is
α2,∀α ≥ α2,

(xα, yα) ∈ (x0, y0) − B1,

i.e., there exists b′
α ∈ B1, (xα, yα) = (x0, y0) − b′

α . Hence ∀α ≥ α0 = max{α1, α2},
(x0α, y0α) = (x0, y0) + bα = (xα, yα) + b′

α + bα ∈ (xα, yα) + B.

This is impossible due to the fact that (x0α, y0α) /∈ Sol1(λα, µα) + B. Thus, Sol1(., .) is
U -Hausdorff-lower-level closed at (λ0, µ0). ��

Propositions 2.2, 2.3 and Theorem 3.5 derive the following result.

Corollary 3.5 Assume all assumptions as in Corollary 3.1 and Theorem 3.5 but (i), and
replace (i) by

(i′) E is lsc at λ0 and E(λ0) is compact.

Then Sol1(., .) is Hlsc at (λ0.µ0).

The following example explains the essentialness of the compactness of E(λ0).

Example 3.6 Let X = Y = Z = R,Λ ≡ M = [0, 1], K = D = R, C = R+, S(x, y, λ) =
A(x, y, λ) = {x}, T (x, y, λ) = {λx}, B(x, y, λ) = {y}, F(x, y, x∗, µ) = G(y, x, y∗, µ) ≡
{1}.

It is clear that E(λ) = {(x, λx) ∈ R2 | x ∈ R}. So, E is lsc; S, T, A, and B are con-
tinuous and have compact values in K × D × Λ; F and G are continuous and compact
valued in R4. Hence, all assumptions of Corollary 3.5 but (i) are fulfilled. It is easy to see
that Sol1(λ) = E(λ) = {(x, λx) | x ∈ R}. Thus, Sol1(.) is lsc in R. But ∀λ0 ∈ Λ, Sol1(.) is
not Hlsc at λ0, since ∀λ �= λ′, H

(
Sol1(λ), Sol1(λ′)

) = +∞, where H(., .) is the Hausdorff
distance. The reason is that E(λ0) is not compact.
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Similarly, we obtain the following results corresponding to Theorems 3.2–3.4 and Corol-
laries 3.2–3.4.

Theorem 3.6 Assume all assumptions of Theorem 3.5 but (i i i l
l ) and (iv1) . Assume further

that

(iii1) F and G have the C-inclusion property in K × D × K ×{µ0} and D × K × D ×{µ0},
respectively.

Then Sol1(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 3.6 Assume all assumptions of Theorem 3.6 but (i), and replace (i) by

(i′) E is lsc at λ0 and E(λ0) is compact.

Then Sol1(., .) is Hlsc at (λ0.µ0).

Theorem 3.7 Assume all assumptions of Theorem 3.3 and (i), (i i) of Theorem 3.5. Assume
further that

(iii′) F(., ., ., µ0) and G(., ., ., µ0) are −C-lsc.

Then Sol2(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 3.7 Assume all assumptions of Theorem 3.7 but (i) and replace (i) by

(i′) E is lsc at λ0 and E(λ0) is compact.

Then Sol2(., .) is Hlsc at (λ0.µ0).

Theorem 3.8 Assume all assumptions of Theorem 3.7 but (i i iul ) and (iv2). Assume further
that

(iii2) F and G have the strict C-inclusion property in K×D×K×{µ0}and D×K×D×{µ0},
respectively.

Then Sol2(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 3.8 Assume all assumptions of Theorem 3.8 but (i) and replace (i) by

(i′) E is lsc at λ0 and E(λ0) is compact.

Then Sol2(., .) is Hlsc at (λ0.µ0).

Example 3.6 shows also that the assumed compactness of E(λ0) is essential for Corollaries
3.6–3.8, since the C-inclusion properties are satisfied and F and G are single-valued.

4 Upper-semicontinuity-related results

Theorem 4.1 Assume for problem (SQE P1) that, for U ⊆ X × Y ,

(iu) E(.)\−intU is usc and E(λ0)\−intU is compact;
(iil) S, T, A, and B are lsc in K × D × {λ0};

(i i iu
u ) F and G are (−C)-usc in K × D × K × {µ0} and D × K × D × {µ0}, respectively.

Then Sol1(., .) is U-upper-level closed at (λ0, µ0).
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Proof Reasoning ab absurdo suppose the existence of (λα, µα) → (λ0, µ0) such that
Sol1(λα, µα) �⊆ −intU for all α but Sol1(λ0, µ0) ⊆ −intU . Then there exists (xα, yα) ∈
Sol1(λα, µα)\−intU . By (iu) one can assume that (xα, yα) tends to some (x0, y0) ∈ E(λ0)\
−intU . If (x0, y0) /∈ Sol1(λ0, µ0) then there are x̂0 ∈ S(x0, y0, λ0), x∗

0 ∈ A(x0, y0, λ0),

F(x̂0, y0, x∗
0 , µ0) ⊆ −intC, (7)

or for some ŷ0 ∈ T (x0, y0, λ0), y∗
0 ∈ B(x0, y0, λ0),

G(ŷ0, x0, y∗
0 , µ0) ⊆ −intC. (8)

If (7) is fulfilled, then since S and A are lsc at (x0, y0, λ0), there exist x̂α

∈ S(xα, yα, λα), x∗
α ∈ A(xα, yα, λα) such that x̂α → x̂0, x∗

α → x∗
0 . As F is (−C)-usc

at (x̂0, y0, x∗
0 , µ0) there must be then an ᾱ such that F(x̂ᾱ , yᾱ , x ∗̄

α, µᾱ) ⊆ −intC , which is
impossible as (xᾱ , yᾱ) ∈ Sol1(λᾱ, µᾱ). If (8) holds one gets a similar contradiction. Thus
(x0, y0) ∈ Sol1(λ0, µ0) ⊆ −intU , which contradicts the fact that (xα, yα) /∈ −intU for
all α. ��
Corollary 4.1 Assume (i il) and (i i iu

u ) as in Theorem 4.1 and replace (iu) by

(i ′u) E is usc and E(λ0) is compact.

Then Sol1(., .) is both usc and closed at (λ0, µ0).

Proof The upper semicontinuity follows immediately from Theorem 4.1 and Propositions
2.2 and 2.3.

Suppose that Sol1(., .) is not closed at (λ0, µ0), i.e., there is a net (λα, µα, xα, yα) →
(λ0, µ0, x0, y0) with (xα, yα) ∈ Sol1(λα, µα) but (x0, y0) /∈ Sol1(λ0, µ0). Then we repeat
the second part of the proof of Theorem 4.1 to get a contradiction. ��

In the case where our problems are reduced to quasiequilibrium problems investigated
in Anh and Khanh (2004) and Anh and Khanh (2007a), Corollary 4.1 improves Theorem
3.1 in Anh and Khanh (2004), Theorems 3.1 and 4.1 in Bianchi and Pini (2003), while this
corollary is weaker than Theorem 3.1 in Anh and Khanh (2007a) (but this corollary is easier
to use). Example 3.1 shows also that this corollary is strictly stronger than Theorem 3.1 in
Anh and Khanh (2004), since F is a single-valued function. The following example ensures
that Corollary 4.1 improves the corresponding results in Bianchi and Pini (2003).

Example 4.1 Let X = Z = R,Λ ≡ M = R, K = [0, 1], C = R+, S(x, λ) = K , A(x, λ)

{x}, λ0 = 0 and

F(x, x∗, λ) =
{

{0} if λ = 0,

{1} otherwise.

Then all assumptions of Corollary 4.1 are fulfilled. Hence, this corollary yields the upper
semicontinuity of the solution set, but Theorems 3.1 and 4.1 in Bianchi and Pini (2003) do
not work, since F is neither pseudomonotone nor α-upper-level closed for all α > 0.

Similarly one can obtain the same properties for problem (SQEP2) as follows.

Theorem 4.2 Assume for problem (SQEP2) (iu), and (i il) as in Theorem 4.1. Assume further
that

(i i iu
l ) F and G are (−C)-lsc in K × D × K × {µ0} and D × K × D × {µ0}, respectively.

Then Sol2(., .) is U-upper-level closed at (λ0, µ0).
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Corollary 4.2 Assume (i il) and (i i iu
l ) as in Theorem 4.2 and replace (iu) by

(i ′u) E is usc and E(λ0) is compact.

Then Sol2(., .) is both usc and closed at (λ0, µ0).

For the special case of quasiequilibrium problems Corollary 4.2 is weaker than Theorem
3.1 in Anh and Khanh (2007a). Example 3.1 explains that it improves Theorem 3.4 in Anh
and Khanh (2004).

The following example shows that assumption (i′u) in Corollaries 4.1 and 4.2 is essential.

Example 4.2 Let X=Y=Z=R,Λ ≡ M=[0, 1], K=D=R, C=R+, λ0=0, A(x, y, λ)={x},
B(x, y, λ)={y} and

S(x, y, λ) = (−λ − 1, λ],
T (x, y, λ) ≡ {−1},
F(x, y, x∗, λ) = G(y, x, y∗, λ) ≡ {1}.

Then it is easy to see that all assumptions but (i′u) of Corollaries 4.1 and 4.2 are fulfilled.
For (i′u) we check directly that E(λ) = (−λ − 1, λ] × {1} is not compact at λ0 = 0, but
for U = C × C, E(λ)\−intU = [0, λ] × {1} and hence E(λ0)\−intU is compact and
E(.)\−intU is usc. By direct computation we get Sol1(λ) = (−λ − 1, λ] × {−1}, which is
neither usc nor closed at λ0 = 0, although Sol1(.) is U -upper-level closed at λ0.

As mentioned in Sect. 1, our problems (SQEP1) and (SQEP2) include a wide range of
optimization-related problems (see e.g., Anh and Khanh (2007b), Anh and Khanh (2007c)
for more details about this inclusion). Hence one can derive consequences for these problems
from the results here. In Sect. 6 we discuss corollaries only for one among these problems. In
the example below we show how the typical classical problem of minimizing a (numerical)
function satisfies the assumptions of Corollaries 4.1 and 4.2, to ensure the applicability of
our general results.

Example 4.3 Let X be a Hausdorff topological vector space, M be a topological space,
K ⊆ X be compact and ϕ : K × M → R be a function. Consider, for µ ∈ M , the problem

(MP) min
x∈K

ϕ(x, µ).

Set Y ≡ X,Λ = M, Z = R, C = R+, D ≡ K , S(x, y, λ) = T (x, y, λ) ≡ K , A(x, y, λ)

= B(x, y, λ) = {x}, F(x, y, x∗, µ) = ϕ(x, µ) − ϕ(x∗, µ) and G(y, x, y∗, µ) = {1}. Then,
(SQEP1) and (SQEP2) become (MP). It is easy to see that assumptions (i′u), (iil) of Corol-
laries 4.1 and 4.2 are satisfied and G fulfils (iiiuu) and (iiiul ) (they coincide in this case). This
assumption for F , i.e., F is −R+-usc in K × K × {µ0}, means that

[∃(xα, x∗
α, µα) → (x0, x∗

0 , µ0),∀α, ϕ(xα, µα) − ϕ(x∗
α, µα) ≥ 0]

⇒ [ϕ(x0, µ0) − ϕ(x∗
0 , µ0) ≥ 0].

This in turn is equivalent to saying that the function (x, x∗, µ) → ϕ(x, µ) − ϕ(x∗, µ) is
R+-upper-level closed in K × K × {µ0}. So for (MP), Corollaries 4.1 and 4.2 say that if the
function (x, x∗, µ) → ϕ(x, µ) − ϕ(x∗, µ) is R+-upper-level closed in K × K × {µ0}, then
the solution set of (MP) is usc at µ0. (In this case the upper semicontinuity coincides with
the closedness.)

Passing to Hausdorff upper-level closedness we see that the assumptions can be weakened
correspondingly as follows.
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Theorem 4.3 Assume for problem (SQEP1) that, for ∅ �= U ⊆ X × Y ,

(ihu) E(.)\−intU is Husc and E(λ0)\−intU is compact;
(i i l) S, T, A and B are lsc in K × D × {λ0};

(i i ihu) F and G are −C-Husc in K × D × K ×{µ0} and D × K × D ×{µ0}, respectively;
(ivh) ∀B(open neighborhood of 0 in X × Y ),∀(x, y) /∈ S1(λ0, µ0) + B, ∃BZ (neighbor-

hood of 0 in Z ), ∃x̂ ∈ S(x, y, λ0), ∃x∗ ∈ A(x, y, λ0) such that

F(x̂, y, x∗, µ0) + BZ ⊆ −intC,

or ∃ŷ ∈ T (x, y, λ0), ∃y∗ ∈ B(x, y, λ0) such that

G(ŷ, x, y∗, µ0) + BZ ⊆ −intC.

Then Sol1(., .) is U-Hausdorff-upper-level closed at (λ0, µ0).

Proof Suppose to the contrary that there are a net (λα, µα) → (λ0, µ0) and an open neigh-
borhood B of 0 in X × Y such that Sol1(λα, µα) �⊆ −intU for all α but Sol1(λ0, µ0) +
B ⊆ −intU . There exists then (xα, yα) ∈ Sol1(λα, µα)\−intU . By the compactness of
E(λ0)\−intU and the Hausdorff upper semicontinuity of E(.)\−intU atλ0, we can assume that
(xα, yα) → (x0, y0) for some (x0, y0) ∈ E(λ0)\−intU . If (x0, y0) /∈ Sol1(λ0, µ0)+ B, then
(ivh) yields some neighborhood BZ of 0 in Z and some x̂0 ∈ S(x0, y0, λ0), x∗

0 ∈ A(x0, y0, λ0)

such that
F(x̂0, y0, x∗

0 , µ0) + BZ ⊆ −intC, (9)

or some ŷ0 ∈ T (x0, y0, λ0), y∗
0 ∈ B(x0, y0, λ0) such that

G(ŷ0, x0, y∗
0 , µ0) + BZ ⊆ −intC. (10)

Assume that (9) is satisfied. Taking the lower semicontinuity of S and A at (x0, y0, λ0)

into account one has x̂α ∈ S(xα, yα, λα), x∗
α ∈ A(xα, yα, λα) such that (x̂α, x∗

α) → (x̂0, x∗
0 ).

Since F is −C-Husc at (x̂0, y0, x∗
0 , µ0), there is some ᾱ such that F(x̂ᾱ , yᾱ , xᾱ∗ , µᾱ) ⊆

−intC , which is impossible, since (xᾱ , yᾱ) ∈ Sol1(λᾱ, µᾱ). The case of (10) is analogous.
Thus (x0, y0) ∈ Sol1(λ0, µ0) + B ⊆ −intU . This in turn contradicts the fact that (xα, yα) /∈
−intU for all α. ��

Taking into account Proposition 3.1 in Anh and Khanh (2004) and Propositions 2.2 and
2.3 we obtain the following immediate consequence of Theorem 4.3.

Corollary 4.3 Assume (i il), (i i ihu), and (ivh) as in Theorem 4.3 and replace (ihu) by

(i ′hu) E is Husc and E(λ0) is compact.

Then Sol1(., .) is Husc at (λ0, µ0).

The newly imposed assumption (ivh) cannot be dropped even for the case of quasiequi-
librium problems as shown by Example 3.2 in Anh and Khanh (2004). Furthermore, for the
special case of quasiequilibrium problems, Corollary 4.3 improves Theorem 3.2 in Anh and
Khanh (2004) and it coincides with Theorem 3.2 in Anh and Khanh (2007a).

5 Comparison of the two solution sets

We have seen a symmetry between the sufficient conditions for the two solution sets Sol1
and Sol2 to be U -lower-level closed or U -upper-level closed. The following examples show
that these are far from necessary conditions and the two sets may be or not be U -level closed
to very different extends.
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Example 5.1 (Sol1 is continuous, Sol2 is not lower or upper-level closed). Let X = Y =
Z = R,Λ ≡ M = [0, 1], K = D = R, C = R+, A(x, y, λ) = {x}, B(x, y, λ) =
{y}, S(x, y, λ) = T (x, y, λ) = [−1, 1], λ0 = 0 and

F(x, y, x∗, λ) =
{

(1 + x∗)[−1, 1] if λ = 0,

(1 − x∗)[−1, 1] otherwise,

G(y, x, y∗, λ) =
{

(1 + y∗)[−1, 1] if λ = 0,

(1 − y∗)[−1, 1] otherwise.

It is easy to see that Sol1(λ) = [−1, 1] × [−1, 1],∀λ ∈ Λ and Sol2(0) = {−1} ×
{−1}, Sol2(λ) = {1} × {1},∀λ ∈ (0, 1]. So Sol1(.) is satisfied all kinds of U -semiconti-
nuity at 0. Taking U = R+ × R+, we see that Sol2(.) is neither U -lower-level closed at 0
nor U -Hausdorff-upper-level closed at 0. Indeed, ∀λα → 0, Sol2(λα) = {1} × {1} ∈ clU ,
but Sol2(0) = {−1} × {−1} /∈ clU , and with B = (− 1

2 , 1
2 ) × (− 1

2 , 1
2 ), Sol2(λα) /∈ −intU ,

but Sol2(0) + B = (− 3
2 ,− 1

2 ) × (− 3
2 ,− 1

2 ) ⊆ −intU .

Example 5.2 (Sol1 is not lower-level closed, Sol2 is continuous). Let X, Y, Z ,Λ, M, K , D,

C, A, B, S, T, U , and λ0 be as in Example 5.1 and

F(x, y, x∗, λ) =
{

{x∗ − x, 1} if λ = 0,

{x∗ − x} otherwise,

G(y, x, y∗, λ) =
{

{y∗ − y, 1} if λ = 0,

{y∗ − y} otherwise.

One sees that Sol1(0) = [−1, 1]×[−1, 1], Sol1(λ) = {1}×{1} for λ ∈ (0, 1] and Sol2(λ) =
{1} × {1} for all λ ∈ [0, 1]. Hence Sol1(.) is not U -lower-level closed at 0 and S2(.) satisfies
all kinds of U -level closedness at 0.

Example 5.3 (Sol1 is not Hausdorff-upper-level closed, Sol2 is continuous). Let X, Y, Z ,Λ,

M, K , D, C, A, B, S, T, U , and λ0 be as in Example 5.1 and

F(x, y, x∗, λ) =
{

{x − x∗} if λ = 0,

{x − x∗, 1} otherwise,

G(y, x, y∗, λ) =
{

{y − y∗} if λ = 0,

{y − y∗, 1} otherwise.

Then Sol1(0)={−1} × {−1}, Sol1(λ)=[−1, 1] × [−1, 1],∀λ ∈ (0, 1], Sol2(λ)={−1} ×
{−1},∀λ ∈ [0, 1]. So Sol2(.) fulfils all kinds of U -level closedness at 0. But Sol2(.) is
not U -Hausdorff-upper-level closed at 0. Indeed, taking λα → 0, B=(− 1

2 , 1
2 ) × (− 1

2 , 1
2 ),

Sol1(λα)=[−1, 1]×[−1, 1] �⊆ −intU , and Sol1(0)+ B=(− 3
2 ,− 1

2 )× (− 3
2 ,− 1

2 ) ⊆ −intU .

Being very different in general but under some connectedness assumptions the two solu-
tion sets coincide as follows.

Theorem 5.1 Assume that ∀(x̄, ȳ) ∈ Sol1(λ0, µ0),∀x ∈ S(x̄, ȳ, λ0),∀x∗ ∈ A(x̄, ȳ, λ0),

∀y ∈ T (x̄, ȳ, λ0),∀y∗ ∈ B(x̄, ȳ, λ0), F(x, ȳ, x∗, µ0), and G(y, x̄, y∗, µ0) are arcwisely
connected and does not meet the boundary of −C. Then Sol2(λ0, µ0) = Sol1(λ0, µ0).
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Proof We always have Sol2(λ0, µ0) ⊆ Sol1(λ0, µ0). To see the reverse inclusion let (x̄, ȳ) /∈
Sol2(λ0, µ0) then ∃x ∈ S(x̄, ȳ, λ0), ∃x∗ ∈ A(x̄, ȳ, λ0) such that,

∃z1 ∈ F(x, ȳ, x∗µ0), z1 ∈ −intC, (11)

or ∃y ∈ T (x̄, ȳ, λ0), ∃y∗ ∈ B(x̄, ȳ, λ0) such that,

∃z′
1 ∈ G(y, x̄, y∗µ0), z′

1 ∈ −intC. (12)

Suppose that (x̄, ȳ) ∈ Sol1(λ0, µ0). Then, since F(x, ȳ, x∗, µ0) does not meet the boundary
of −C, ∃z2 ∈ F(x, ȳ, x∗, µ0)\(−C). Since F(x, ȳ, x∗, µ0) is arcwisely connected, there
exists a continuous mapping ϕ : [0, 1] → F(x, ȳ, x∗, µ0) such that ϕ(0) = z1 and ϕ(1) =
z2. Let T = {t ∈ (0, 1] : ϕ([t, 1]) ⊆ Z\(−C)} and t0 = inf T . Since z1 ∈ −intC there is
an open set A such that A ∩ F(x, ȳ, x∗, µ0) is arcwisely connected and z1 ∈ A ⊆ −intC .
Then ϕ−1(A ∩ F(x, ȳ, x∗, µ0)) ∩ T = ∅. Since ϕ−1(A ∩ F(x, ȳ, x∗, µ0)) is open in [0, 1],
it is of the form [0, t1). So it contains 0 and 0 < t1 ≤ t0. Similarly, t0 < 1. Then, for all
large n, there is tn ∈ (

t0 − 1
n , t0

]
such that ϕ(tn) ∈ −C . Then ϕ(t0) ∈ −C since tn → t0

and −C is closed. On the other hand, for all large n, there is tn ∈ (
t0, t0 + 1

n

)
such that

ϕ(tn) ∈ Z\(−C). So ϕ(t0) ∈ cl(Z\(−C)). Thus ϕ(t0) is in the boundary of −C , contradict-
ing the fact that ϕ(t0) ∈ F(x, ȳ, x∗, µ0). If (12) holds, we also have the same contradiction.
Hence Sol1(λ0, µ0) = Sol2(λ0, µ0). ��

The examples below ensure us the essentialness of the assumptions of Theorem 5.1.

Example 5.4 Let X, Y, Z ,Λ, M, K , D, C, A, and B as in Example 5.1 and S(x, y, λ) =
T (x, y, λ) = [0, 1], F(x, ȳ, x∗, λ) = {−x∗, x∗}, G(y, x̄, y∗, µ) = {1}. It is clear that
Sol1(λ) = [0, 1]×[0, 1],∀λ ∈ Λ and Sol2(λ) = {0}×[0, 1],∀λ ∈ Λ. Hence Sol1(λ0, µ0) �=
Sol2(λ0, µ0), the reason is that for (x̄, ȳ) ∈ Sol1(λ), x̄ �= 0, F(x, ȳ, x∗, λ) is not arcwisely
connected for some x ∈ S(x̄, ȳ, λ), x∗ ∈ A(x̄, ȳ, λ).

Example 5.5 Let X, Y, Z ,Λ, M, K , D, C, S, T, A, B, and G as in Example 5.4 and F(x, ȳ,

x∗, λ) = [−x∗, x∗]. Then Sol1(λ) = [0, 1]×[0, 1],∀λ ∈ Λ and Sol2(λ) = {0}×[0, 1],∀λ ∈
Λ. Hence Sol1(λ0, µ0) �= Sol2(λ0, µ0), the reason is that for (x̄, ȳ) ∈ Sol1(λ), F(x, ȳ, x∗, λ)

meets the boundary of −C .

6 Applications

Since symmetric quasiequilibrium problems contain many problems as special cases, includ-
ing quasiequilibrium problems, quasivariational inequalities, quasioptimization problems,
fixed point and coincidence point problems, complementarity problems, Nash equilibria
problems, etc, we can derive from theorems and corollaries in Sects. 3 and 4 consequences
for these special cases. In this section we discuss only some corollaries for a lower and
upper bounded quasiequilibrium problem as an example. This problem, for (λ, µ) ∈ Λ× M ,
consists of

(BQEP) finding x̄ ∈ S1(x̄, λ) such that ∀y ∈ S1(x̄, λ),

α ≤ f (x̄, y, µ) ≤ β,

where S1 : K × Λ → 2X , f : K × K × M → R, α, β ∈ R : α < β.
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Setting X = Y, Z = R, K = D, C = R+, S(x, y, λ) = T (x, y, λ) = S1(x, λ), A(x, y,

λ) = {x}, B(x, y, λ) = {y} and

F(x, ȳ, x∗, µ) = f (x∗, x, µ) − α, (13)

G(y, x̄, y∗, µ) = β − f (x∗, y, µ), (14)

problem (BQEP) becomes a case of problem (SQEP1) (or, the same, (SQEP2)).
Set E1 = {x ∈ K | x ∈ S(x, λ)} and Sol(λ, µ) is solution set of (BQEP) at (λ, µ) ∈

Λ × M .
Let us now analyze the assumptions of the results in Sects. 3 and 4, applied to (BQEP).
For F and G given in (13) and (14) the condition that F and G are (0,+∞)-lsc at

(x0, y0, µ0) become (in terms of f )

[(xγ , yγ , µγ ) → (x0, y0, µ), α < f (x0, y0, µ0) < β]
�⇒ [∃γ̄ , α < f (xγ̄ , yγ̄ , µγ̄ ) < β].

This property is naturally called the (α, β)-boundedness of f at (x0, y0, µ0).
It is clear that F and G are R−-usc or R−-Husc become that f is (−∞, α) ∪ (β,+∞)-

bounded.
Similarly R+-inclusion properties in (iii1) and (iii2) will be the following condition in

terms of f :

[(xγ , yγ , µγ ) → (x0, y0, µ0), α ≤ f (x0, y0, µ0) ≤ β]
�⇒ [∃γ̄ , α ≤ f (xγ̄ , yγ̄ , µγ̄ ) ≤ β],

which is called the [α, β]-boundedness of f at (x0, y0, µ0).
Note that if f : X → R is continuous at x̄ and α, β ∈ R then f is both (α, β)-bounded

and (−∞, α) ∪ (β,+∞)-bounded at x̄ but f may be not [α, β]-bounded at x̄ as shown by
the following example.

Example 6.1 Let X = Y = R, f (x) = x, α = 0, β = 1, x0 = 0. It is clear that f is
continuous at 0 but f is not [0, 1]-bounded at 0. Indeed, let xn = − 1

n , one has f (0) ∈ [0, 1]
but f (xn) �∈ [0, 1],∀n.

Now Theorems 3.1–3.2 and Corollaries 3.1–3.2 derive the following four corollaries,
respectively.

Corollary 6.1 For problem (B QE P) assume that, for ∅ �= U ⊆ X,

(il ) E1(.)\clU is lsc at λ0;
(i iu) S is usc and compact valued in K × {λ0};
(iiill) f is (α, β)-bounded in K × K × {µ0};
(iv1) for each x ∈ Sol(λ0, µ0),∀y ∈ S(x, λ), α < f (x, y, µ0) < β.

Then Sol(., .) is U-lower-level closed at (λ0, µ0).

Corollary 6.2 Assume (i iu)–(iv1) of Corollary 6.1. Assume further that

(i ′l ) E is lsc at λ0.

Then Sol(., .) is lsc at (λ0, µ0).

Corollary 6.3 Assume (il) and (i iu) as in Corollary 6.1 and replace (iiil l ) and (iv1) by
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(iii1) f is [α, β]-bounded in K × K × {µ0}.
Then Sol(., .) is U-lower-level closed at (λ0, µ0).

Corollary 6.4 Assume (i iu) and (i i i1) as in Corollary 6.3 and replace (il) by

(i ′l ) E is lsc at λ0.

Then Sol(., .) is lsc at (λ0, µ0).

The next four corollaries are direct consequences of Theorems 3.5–3.6 and Corollaries
3.5–3.6, respectively.

Corollary 6.5 Assume (i iu), (i i i l
l), and (iv1) of Corollary 6.1. Assume further, for ∅ �= U ⊆

X, that

(i) E is lsc with respect to intU at λ0 and E(λ0)\intU is compact;
(ii) S(., ., λ0) is lsc;

(iii) f (., ., λ0) is (−∞, α) ∪ (β,+∞)-bounded in K × K .

Then Sol(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 6.6 Assume all assumptions as in Corollary 6.5 but (i), and replace (i) by

(i ′) E is lsc at λ0 and E(λ0) is compact.

Then Sol(., .) is Hlsc at (λ0.µ0).

Corollary 6.7 Assume all assumptions of Corollary 6.5 but (i i i l
l ) and (iv1). Assume further

that

(i i i1) f is [α, β]-bounded in K × K × {µ0}.
Then Sol(., .) is U-Hausdorff-lower-level closed at (λ0, µ0).

Corollary 6.8 Assume all assumptions of Corollary 6.7 but (i), and replace (i) by

(i ′) E is lsc at λ0 and E(λ0) is compact.

Then Sol(., .) is Hlsc at (λ0.µ0).

It is easy to see that for the solution set of problem (BQEP) the upper semicontinuity and
Hausdorff upper semicontinuity coincide. The following two corollaries are direct conse-
quences of the results in Sect. 4.

Corollary 6.9 Assume that, for ∅ �= U ⊆ X,

(iu) E(.)\−intU is usc and E(λ0)\−intU is compact;
(iil) S is lsc in K × {λ0};

(i i iu
u ) f is (−∞, α) ∪ (β,+∞)-bounded in K × K × {µ0}.

Then Sol(., .) is U-upper-level closed at (λ0, µ0).

Corollary 6.10 Assume (i il) and (i i iu
u ) as in Corollary 6.9 and replace (iu) by

(i ′u) E is usc and E(λ0) is compact.

Then Sol(., .) is both usc and closed at (λ0, µ0).
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